the impact of wettability on effective properties of cathode catalyst layer in a proton exchange membrane fuel cell
نویسندگان
چکیده
the produced liquid water in cathode catalyst layer (ccl) has significant effect on the operation of proton exchange membrane fuel cell (pemfc). to investigate this effect, the transport of oxygen in ccl in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. the ccl was reconstructed as an agglomerated system. to explore the wettability effects, different contact angles were considered at the surface of agglomerates. the effective diffusivity of oxygen was calculated under different contact angles at various saturation levels. the same effective diffusivity was obtained for hydrophilic and hydrophobic domains at lower saturations, however, at saturation above 0.4, hydrophobic domain provided higher effective diffusivity values. the effect of water coverage at reaction surface areas was investigated. the results showed that, at the saturation of 0.4, the hydrophobic domain with the contact angle of 150 has about 2 times more available surface area, due to different distribution of water phase compared to the hydrophilic domain with the contact angle of 20.
منابع مشابه
The Impact of Wettability on Effective Properties of Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell
The produced liquid water in cathode catalyst layer (CCL) has significant effect on the operation of proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in CCL in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability effects, diffe...
متن کاملThe Impact of Wettability on Effective Properties of the Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell
The produced liquid water in the cathode catalyst layer (CCL) has a signi cant effect on the operation of a proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in the CCL in the presence of immiscible liquid water is studied by applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability...
متن کاملNumerical study on the performance prediction of a proton exchange membrane (PEM) fuel cell
An electrochemical analysis on a single channel PEM fuel cell was carried out by Computational Fuel Cell Dynamics (CFCD). The objective was to assess the latest developments regarding the effects of change in the current collector materials, porosity of electrodes and gas diffusion layer on the fuel cell power density. Graphite, as the most applicable current collector material, was applied fol...
متن کاملDynamic investigation of hydrocarbon proton exchange membrane Fuel Cell
Sulfonated polyether ether ketone (SPEEK) is categorized in a nonfluorinated aromatic hydrocarbon proton exchange membrane (PEM) group and considered as a suitable substitute for common per-fluorinated membranes, such as Nafion, due to wider operating temperature, less feed gas crossover, and lower cost. Since modeling results in a better understanding of a phenomenon, in this study a dynamic o...
متن کاملThe simulation of novel annular shape on the Performance in Proton Exchange Membrane Fuel Cell
In this article, one-phase and three dimensional computational fluid dynamics analysis was utilized to investigate the effect of annular field pattern of proton exchange membrane fuel cells (PEMFC) with different geometry on the performances and species distribution. This computational fluid dynamics code is used for solving the equation in single domain namely the flow field, the mass conserva...
متن کاملCarbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell.
A simple filtration method is developed to prepare a partially oriented superhydrophobic film of carbon nanotubes (CNTs) that have been catalyzed with uniform small Pt nanoparticles (2.8 nm) at high metal loading (30 wt %). A proton-exchange membrane fuel cell with the oriented CNT film as the cathode achieves higher single-cell performance than those with carbon black and a disordered CNT-film...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of hydrogen and fuel cellجلد ۳، شماره ۳، صفحات ۲۳۳-۲۴۵
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023